优秀教育教学案例—赖小燕
初三第二章第八节讲的是二次函数与一元二次方程。
主要讲了两个方面问题:一是用方程的方法研究二次函数图象与x轴交点个数以及交点求法问题;二是用图象的方法求方程的近似根问题。其实,这两个问题本质是一样的,就是用数形结合的方法解决问题。为了训练学生领会并运用数形结合的思想方法解决问题,我在完成课本内容之后,我又着重安排三个训练学生数形结合思想的题型,通过训练使学生进一步理解数形结合的思想,掌握运用的方法。
例1:当x为何值时,不等式x2+5x−6>0 成立?
先让学生自己解,多数学生试图类比解方程的方法去解解不等式,得出错误结果。
引导学生分析错误原因之后,提示学生,这个问题与我们正在学习的二次函数有什么联系?能否借助函数图象解决这个问题?
仅这一句话,就让学生恍然大悟。
教师点评:此题最好的方法是利用二次函数图象解决,先求出抛物线y= x2+5x−6与x轴的两个交点,画出抛物线草图,很易在图像上观察出当x<-6或x>1时不等式成立。
例2:已知二次函数 y= x2+2mx+m-7与x轴的两个交点在点(1,0)两侧,判断关于x的方程 1/4x2+(m+1)x+m2+5=0的根情况。
此题有一定的难度,学生能想到解决此题的关键是由y= x2+2mx+m-7判断m的范围,但是怎样求m 的范围成了难点。个别学生想到利用根与系数关系,因为与x轴的两个交点在点(1,0)两侧,所以一个根大于1,一个根小于1,由此得知m必须满足不等式(x1-1)(x2-1)<0.由此解不等式可求m的范围,虽说能求,但是确实不易想到,并且还要用到许多方程的知识。
教师提示:利用数形结合的方法,根据已知条件画出抛物线y= x2+2mx+m-7的草图,再结合图象去观察,你能有什么发现呢?
学生结合图象发现,y= x2+2mx+m-7的开口向上,两个交点在点(1,0)两侧,说明x=1时y<0,即1+2m+m-7<0,则m<2。那么,关于x的一元二次方程的判别式:△=(m+1)2-(m2+5)=2(m-2) <0,方程无实根。
简便的方法使学生对数形结合的数学思想更感兴趣。我又给出第三题。
例3:判断方程 –x2+5x-2=2/x的正根的个数
这时,那些思维快的同学很快得出结论:如果按一般的方法去分母,将会出现一元三次方程,解起来非常困难,如果运用函数的思想,把它们看作是求二次函数图像与反比例函数图像的交点问题,利用函数图象解就非常轻松了。
把左边的二次函数y=–x2+5x-2,可知顶点在第一象限,右边看做反比例函数y=2/x图象也在第一、三象限,并且两个图象在第一象限有两个交点,所以方程有两个正根。
感悟:数形结合是初中数学的一个重要方法,通过一定训练使学生领会其中的思想并能根据问题的特点灵活、巧妙地运用,对提高学生综合能力非常有益。
工作室介绍
工作室成立于2013年1月。工作室以提升教师专业素养为目标,以课题研究...